Multibody Interactions, Phase Behavior, and Clustering in Nanoparticle-Polyelectrolyte Mixtures.
نویسندگان
چکیده
We present the results of a computational study of the interactions, phase-behavior and aggregation characteristics of charged nanoparticles (CNPs) suspended in solution of oppositely charged polyelectrolytes (PEs). We used an extension of the mean-field polymer self-consistent field theory (SCFT) model presented in our earlier work ( Macromolecules , 2014 , 47 , 6095 - 6112 ) to explicitly characterize the multibody interactions in such systems. For dilute-moderate particle volume fractions, the magnitudes of three and higher multibody interactions were seen to be weak relative to the contributions from pair interactions. On the basis of such results, we embeded the pair-interaction potentials within a thermodynamic perturbation theory approach to identify the phase behavior of such systems. The results of such a framework suggested that the gas and FCC crystal phases were thermodynamically stable, whereas the fluidlike phase was metastable in such systems. To complement the parameters studied using SCFT, we used a recently developed multibody simulation approach to study the aggregation and cluster morphologies in CNP-PE mixtures. For low particle charges, such systems mainly exhibited clusters arising from direct contact aggregation between CNPs. However, for higher particle and PE charges and low PE concentrations, large regions of PE-bridged clusters were seen to form. We present a morphological phase diagram summarizing such results.
منابع مشابه
Size ratio effects on interparticle interactions and phase behavior of microsphere-nanoparticle mixtures.
We investigate the interparticle interactions and phase behavior of microsphere-nanoparticle mixtures of high charge asymmetry and varying size ratio. In the absence of nanoparticles, negligibly charged microspheres flocculate as a result of van der Waals interactions. Upon addition of a lower critical nanoparticle volume fraction, the microspheres are stabilized by the formation of nanoparticl...
متن کاملPhase separation in symmetric mixtures of oppositely charged rodlike polyelectrolytes.
Phase separation in salt-free symmetric mixtures of oppositely charged rodlike polyelectrolytes is studied using quasi-analytical calculations. Stability analyses for the isotropic-isotropic and the isotropic-nematic phase transitions in the mixtures are carried out and demonstrate that electrostatic interactions favor nematic ordering. Coexistence curves for the symmetric mixtures are also con...
متن کاملInterparticle interactions and direct imaging of colloidal phases assembled from microsphere-nanoparticle mixtures.
We investigate the interparticle interactions, phase behavior, and structure of microsphere-nanoparticle mixtures that possess high size and charge asymmetry. We employ a novel Monte Carlo simulation scheme to calculate the effective microsphere interactions in suspension, yielding new insight into the origin of the experimentally observed behavior. The initial settling velocity, final sediment...
متن کاملOrigin of Particle Clustering in a Simulated Polymer Nanocomposite and its Impact on Rheology
Many nanoparticles have short-range interactions relative to their size, and these interactions tend to be ‘‘patchy’’ since the interatomic spacing is comparable to the nanoparticle size. For a dispersion of such particles, it is not a priori obvious what mechanism will control the clustering of the nanoparticles, and how the clustering will be affected by tuning various control parameters. To ...
متن کاملDielectric discontinuity effects on the adsorption of a linear polyelectrolyte at the surface of a neutral nanoparticle.
The formation of complexes between nanoparticles and polyelectrolytes is a key process for the control of the reactivity of manufactured nanoparticles and rational design of core shell nanostructures. In this work, we investigate the influence of the nanoparticle dielectric constant on the adsorption of a linear charged polymer (polyelectrolyte) at the surface of a neutral nanoparticle. The pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 119 45 شماره
صفحات -
تاریخ انتشار 2015